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Abstract—For a grammar-based approach to the recognition of visual events, there are two major limitations that prevent it from real

application. One is that the event rules are predefined by domain experts, which means huge manual cost. The other is that the

commonly used grammar can only handle sequential relations between subevents, which is inadequate to recognize more complex

events involving parallel subevents. To solve these problems, we propose an extended grammar approach to modeling and

recognizing complex visual events. First, motion trajectories as original features are transformed into a set of basic motion patterns of a

single moving object, namely, primitives (terminals) in the grammar system. Then, a Minimum Description Length (MDL) based rule

induction algorithm is performed to discover the hidden temporal structures in primitive stream, where Stochastic Context-Free

Grammar (SCFG) is extended by Allen’s temporal logic to model the complex temporal relations between subevents. Finally, a

Multithread Parsing (MTP) algorithm is adopted to recognize interesting complex events in a given primitive stream, where a Viterbi-

like error recovery strategy is also proposed to handle large-scale errors, e.g., insertion and deletion errors. Extensive experiments,

including gymnastic exercises, traffic light events, and multi-agent interactions, have been executed to validate the effectiveness of the

proposed approach.

Index Terms—Rule induction, parsing, event recognition.

Ç

1 INTRODUCTION

RECENTLY, visual event recognition has become one of the
most active topics in computer vision, due to its wide

application prospects in video surveillance, video retrieval,
and human-computer interaction [1], [2]. Much work has
been reported for recognizing a wide range of events from
short-term, single-agent actions, e.g., run and walk [4], [5],
[6], to long-term, complex activities, e.g., complex operating
procedures and multi-agent interactions [10], [12], [13], [14],
[23], [25], [27].

The focus of this paper is to recognize long-term complex
events that include the interactions between multiple
moving objects and/or the interactions between moving
objects and static references in scenes. As shown in Fig. 1,
gymnastic exercises can be considered as the collaboration
of moving feet and hands. The traffic light events at a
crossroad consist of the passings of multiple vehicles at
different lanes with different directions. And multi-agent
interactions can also be represented as the combination of
individuals’ relative motions.

Motivated by a cognitive intuition that a complex event

can be perceived as a number of components and their

relations, we adopt a hierarchical approach based on some

syntactic techniques [3]. As Stochastic Context-Free Gram-

mar (SCFG) has a powerful capability to recover hierarchical

structures in a input string, many researchers have used it to
recognize fairly complex visual events, such as hand gesture
[20], human-vehicle interactions [21], operating procedures
[22], [23], [27], [28], vehicle behaviors [26], human interac-
tions [25], etc. Commonly, the low-level image features are
first transformed into a set of terminal symbols. The
transformation is completed by some prior knowledge,
e.g., motion detection in some special areas. Then, the
symbol stream is fed into a grammar parser to recover the
hidden structure and recognize the interesting events.

However, previous approaches have two major limita-
tions that prevent stochastic grammar from real applica-
tions. One is that all event rules (grammar productions) are
predefined by experts, which means huge manual cost. The
other is that the grammar parser can only handle sequential
relations between subevents, while parallel temporal rela-
tions often exist in complex events, such as “raising both
hands overhead concurrently.”

Therefore, for the above problems, we propose an
extended grammar approach to recognize complex events.
Fig. 2 presents the flowchart of our approach. As shown in
the figure, the motion trajectories of moving objects are
extracted as the original representation of complex events.
Then, these trajectories are transformed into a set of
primitives which describe some basic spatial relationships
of a single moving object to a reference in the scene. In the
following, the primitive stream is fed into the module of
event rule induction, where a Minimum Description Length
(MDL) based rule induction algorithm is performed to
discover the hidden temporal structures in primitive stream.
As results, a number of event rules are learned automati-
cally, where the traditional SCFG production is extended by
Allen’s temporal logic [43] so as to describe the complex
temporal relations between subevents. In testing, a Multi-
thread Parsing (MTP) algorithm is executed to parse a given
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primitive stream, further recognizing the interesting com-
plex events that may include parallel temporal relations.

Compared with previous work, the main contributions
of this paper can be summarized as follows:

. The traditional SCFG production is extended with
Allen’s temporal logic [43], where a temporal matrix
is used to describe the temporal relations.

. In previous grammar-based work, the event rules
are predefined manually. Here, based on an MDL-
based rule induction algorithm, we try to learn the
event rules automatically.

. Instead of the common parser that only handles
sequential relations between subevents, a multi-
thread parsing algorithm is adopted to recognize
complex events with parallel temporal relations.

. Considering the large-scale errors, e.g., insertion and
deletion errors, a Viterbi-like error recovery strategy
is designed to enhance the robustness of the
proposed parser.

This paper is an enhanced combination of our previous
conference papers [40] and [41] which focus on rule
learning and event parsing, respectively. Here, we integrate
them into a full-fledged system. More experimental results
with variant parameter settings are presented to evaluate
the proposed algorithm. Furthermore, new experiments on
recognizing multi-agent interactions are shown in this
journal paper.

In activity recognition, most popular public data sets,
such as the KTH action data set [6], Weizmann action data
set [8], and INRIA data set [9], are adopted to recognize
simple actions of single person, e.g., run and walk, where the
person does not interact with other moving objects or
references. To evaluate higher level complex activities
recognition algorithms, very few public data sets exist [2].
Thus, our goal in experiments is to give some empirical
proofs of the proposed approach, rather than trying to
improve the performance in standard databases. Here,
extensive experiments involving gymnastic exercises, traffic
light events, and multi-agent interactions are performed to
validate the effectiveness of our approach.

The remainder of this paper is organized as follows:
Section 2 describes related work on visual event recogni-
tion. Section 3 introduces the feature representation and
primitive modeling. As the core content, the MDL-based
rule induction and the multithread parsing are presented in
Sections 4 and 5, respectively. Section 6 gives the experi-
mental results. Finally, we conclude this work in Section 7.

2 RELATED WORK

As introduced in [2], visual events can be divided into two
major classes, namely, actions and activities. Actions denote
those short-term, single-agent events, such as walk and run.
For actions, researchers mainly aim to develop effective
spatiotemporal descriptors at image level, e.g., the spatial-
temporal interesting points [4], [5], [6] and 3D spatiotem-
poral volume-based descriptors [7]. High recognition rates
on some public databases, e.g., the KTH actions data set [6],
Weizmann action data set [8], and INRIA action data set [9],
have been reported.

However, classification of simple actions is not enough
to interpret what happens in a long duration with
contextual meanings. The events occurring in a long
duration usually consist of several simple subevents. In
[2], these events are denoted as “activities.” To recognize

ZHANG ET AL.: AN EXTENDED GRAMMAR SYSTEM FOR LEARNING AND RECOGNIZING COMPLEX VISUAL EVENTS 241

Fig. 2. The flowchart of our approach. First, motion trajectories (the dark green boxes denote the spatiotemporal scopes of trajectories) are mapped
to a set of primitives that serve as the terminals in the grammar. Then, from the primitive stream, an event rule induction algorithm is adopted to learn
a set of event rules. In testing, an MTP algorithm is adopted to recover the temporal structure (parse tree) in a given primitive stream, further
recognizing the interesting complex events. The pink and green backgrounds denote the recognizing process and the learning process, respectively.

Fig. 1. Examples of multi-agent events involving complex temporal
relations. (a) Gymnastic exercises. (b) Traffic light events. (c) Multiagent
interactions.



complex events, the key problem is how to model the
intrinsic spatiotemporal structures.

For modeling the temporal structures in complex events,
a great deal of work has also been done at various levels.
Some researchers worked at the signal level, in which the
extracted feature sequence was directly feed into some
probabilistic graphical models, e.g., Hidden Markov Model
(HMM) and Dynamic Bayesian Network (DBN), where the
model topology encodes the event structure [11], [12], [13],
[14], [15]. Some well-studied inference approaches, e.g., the
EM algorithm [19], have been developed for parameter
estimation. Probabilistic graph models have the advantage
of handling the uncertainties in low-level image processing
or tracking. However, along with the increasing event
complexity, such as the number of moving agents involved,
the performance seriously relies on an appropriate model
topology which would be too difficult to learn from little
training data. In most cases, the model topology needs to be
predefined manually.

On the other hand, some researchers perform event
recognition at the symbol level. Some basic events (primi-
tives) are first detected from low-level features. Then,
complex events are represented as the combination of
several subevents with certain spatial, temporal, or logical
constraints [31], [33]. As mentioned above, SCFG has been
adopted in much work [21], [22], [23], [24], [25], [26], [27].
However, two major limitations exist, i.e., rule learning and
complex temporal relation modeling.

For rule learning, some methods were proposed. Need-
ham et al. [29] set up an autonomous cognitive agent system
to find the game protocols with Inductive Logic Program-
ming (ILP). Hamid et al. [30] adopted n-grams to discover
the meaningful structures in a long-time event streams,
where the transitions between adjacent events were
counted. Toshev et al. [34] used an a priori-based mining
algorithm to find the frequent temporal patterns. In [32],
Fleischman et al. also discovered some hierarchical frequent
patterns. Then a Support Vector Machine (SVM) is adopted
to classify events.

For parallel relation modeling, some work has also been
done. The authors extended the traditional grammar by
introducing the Temporal Relation Events (TRE) in [28]. And
simple temporal reasoning is appended in grammar parsing.
However, the temporal reasoning is only performed between
two subactivities belonging to different agents. In [25], with a
context-free grammar-based representation, Ryoo and Ag-
garwal used Allen’s temporal logic [43] to model the parallel
relations in human interactions. And the recognizing
problem was turned into a constraint satisfaction problem.

In [44], a multidimensional parsing algorithm was also
proposed to handle parallel temporal relations in multimodal
human-computer interaction. Nevertheless, the above meth-
ods have a lack of error handling; the parsing may fail due to
the errors in primitive detection.

In our work, motion trajectories are adopted as original
features, as trajectory is one of the most useful pieces of
information to represent the behavior of moving object.
Much effort has been done on trajectory analysis. In [16], a
codebook of prototype is generated using online vector
quantization. Then, different motion paths in scenes were
obtained by the co-occurrence statistics of the prototypes
within single trajectory. Porikli and Haga [17] proposed an
HMM distance to measure the similarity between two
trajectories, then eigenvalue decomposition was applied to
find the usual clusters, where the number of clusters can be
estimated by counting the number of eigenvectors used to
span the feature similarity space. Hu et al. [18] also
developed a hierarchical clustering system to learn a single
vehicle’s motion patterns. Based on the learned clusters,
behavior prediction and anomaly detection have been
realized. However, most previous work only focuses on
modeling the motion patterns of single trajectory. In this
work, we also try to discover the temporal structures
hidden in a trajectory stream.

3 FEATURE REPRESENTATION AND PRIMITIVE

MODELING

The grammar-based method works at symbol level. Thus,
the low-level features should be transformed into a set of
primitives (atoms) serving as the terminals in a grammar.

Referring to [33], a primitive is defined as a single,
coherent unit of movement performed by one agent, which
describes some aspects of the spatial relationship of the
moving agent to a reference object. In our work, each
primitive corresponds to one trajectory segment that
describes the evolution of spatial position of one moving
agent to other references in the scene.

As shown in Fig. 3, the references are obtained by
clustering some meaningful points in trajectories, e.g., the
stop points in the exercises or the entering/existing points
in the crossroad.

Then, the trajectories occurring between each pair of
references are considered as one basic motion pattern of
single object. For example, the motion pattern in Fig. 4a
indicates “left foot moves from the reference lf#1 to the reference
lf#2” shown in Fig. 3. Finally, for each motion pattern, the
HMM is trained as the primitive detector.
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Fig. 3. Illustrations on the references in the scenes. (a) The stop points in the gymnastic exercises, where lf = left foot, rf = right foot, lh = left hand,
and rh = right hand. (b) and (c) The entries and exits in the traffic scene, respectively.



Then, each primitive is represented as a 5-tuple:

fe type; agent id; t range; s range; likelihoodg; ð1Þ

where e type denotes event type, agent id indicates the agent
identity of the current event, t range is the time interval
ðstart point; end pointÞ of the event, s range is represented as
fðxmin; xmaxÞ; ðymin; ymaxÞ; ðomin; omaxÞg, which records the
primitive’s spread range in the x-axis and y-axis as well as
the spread range in motion orientation, and likelihood is the
likelihood probability of the trajectory belonging to the given
primitive model. Finally, a primitive stream can be obtained
in terms of the end point of each primitive ascendingly.

Note that primitive modeling is not the focus of this
paper. The primitive modeling process is independent of
the following rule induction and parsing algorithms. The
current approach to detecting primitives can thereby be
replaced by other ones according to different application
domains, as long as an interval-based primitive stream can
be obtained.

4 MDL-BASED EVENT RULE INDUCTION

4.1 Definition of Event Rule

In this study, based on the traditional SCFG production, we
use Allen’s temporal logic [43] to describe the relation
between two events. An event rule is defined as follows:

E ! s fRg ½P �; ð2Þ

where E is the leftmost nonterminal, s is a symbol string
where each symbol denotes a subevent of E, R is the
temporal matrix where element rij denotes the temporal
relation between the ith subevent and the jth subevent in s.
P is the conditional probability of the production being
chosen, given the event E. An example of event rule is
shown in Fig. 5.

4.2 Basic Rule Induction Algorithm

Referring to [36], an MDL-based rule induction algorithm is
adopted to learn event rules. As shown in Fig. 6, a number of
rule candidates are generated by two operators construct
andmerge. For each event pair ðA;BÞ in current training data

and rule set, the construct operator generates a set of

candidates P ! A B fRjg, where Rj belongs to all possible

temporal relations, whereas merge operator creates a rule

candidate P ! A j B, which means A and B can be replaced

by P .
Then, in the MDL-based evaluation, a given rule

candidate first updates the old rule set. For a construct

candidate, the old rule set is updated by adding this

candidate. For a merge candidate, the symbols on the right

hand will be replaced by the symbol on the left hand. Then,

we check whether identical rules exist in the current set

(they should share the same left hand and right hand as

well as the same temporal relationships). If true, all

identical rules are merged into one rule, where the

probability is also added together. Then, for each rule in

the updated set, we replace the instances (right hand) in the

training event stream with the left-hand symbol.
For each candidate, we compute the description lengths

(DL) before and after the updating operation, respectively

(see below), where the difference between the old DL and
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Fig. 4. Some basic motion patterns in our experiments. (a)-(e) Some basic patterns in the gymnastic exercises. (f)-(j) Some basic patterns in the
crossroad scene. The white arrows denote the moving directions. (a) lf_1_2. (b) lh_1_2. (c) lh_1_3. (d) rf_2_1. (e) rh_2_3. (f) v_1_6. (g) v_2_5.
(h) v_5_2. (i) v_7_5. (j) v_8_1.

Fig. 5. Illustration of event rule. (a) An event rule where P ! ABC is the
traditional grammar production, R is the temporal matrix (abbreviations:
a = after, b = before, d = during, id = inverse during). (b) The part
enclosed by the dashed red lines illustrates an instance of this
production in event stream.



the new DL evaluates the compression ability of the

candidate. After the evaluations over all candidates, we

chose the candidate which maximally decreases the DL as

the new rule in current iteration. Further, we update the

rule set and the training event stream with the new rule. If

the decrease of DL is smaller than a given threshold or the

maximum iteration number is reached, the induction

process will be halted.
At the computation of DL, in terms of [38], the DL is

computed as LðG;SÞ ¼ LðS j GÞ þ LðGÞ, where G is the
learned grammar, S is the input event stream. LðS j GÞ is
the number of bits needed to encode the event stream with
the help of the grammar, LðGÞ stands for that to encode the
grammar. Similarly to the definition of event rule, the event
stream can also be described as a symbol string and the
corresponding temporal matrix. Therefore, LðS j GÞ is
computed as follows.

4.2.1 Encoding the Symbol String

Suppose the symbol string of current event stream is
e1e2 . . . en and the set of unique symbols is fE1; E2; . . . ; Ecg,
where ei ¼ Ek results from replacing the substream sub s in
the original event stream with the current rule set. To
encode the symbol string, the number of bits Sbits is
computed, according to [39]:

Sbits ¼ �
Xn
i¼1

logP ðsub s; eiÞ

¼ �
Xn
i¼1

log P ðsub sjeiÞ � P ðeiÞð Þ

¼ �
Xn
i¼1

log lik ei � P ðeiÞð Þ;

ð3Þ

where P ðeiÞ ¼ P ðEkÞ is the normalized support value ofEk in

the event stream, which ensures
Pc

k¼1 P ðEkÞ ¼ 1; lik ei is the

likelihood probability of ei. Here, the likelihood of event e is

computed as soon as it is generated by replacing the

substream e01e
0
2 . . . e0m with the event rule E ! E01E

0
2 . . .E0m.

lik e ¼
Ym
j¼1

lik e0j

 !
� P ðE ! E01E

0
2 . . .E0mÞ; ð4Þ

where P ðE ! E01E
0
2 . . .E0mÞ is the probability of the

production and e0j is the instance of E0j.
As in the above description, the likelihoods of subevents

are embedded into the new events. And the uncertainties in

primitive detection are also considered in the encoding

process.

4.2.2 Encoding the Temporal Matrix

To encode the temporal matrix, the number of bits Rbits is

computed with an enumerative encoding strategy.
Since the temporal matrix is an anti-symmetry-like matrix,

only encoding the upper triangular matrix is enough. There

are only eight possible temporal relations fbefore;meet;
overlap; start; during; finish; equal; inversefinishg i n t h e

upper triangular matrix. Moreover, it is explicit that most

of the values in the ith row of the upper triangular matrix are

before, when i << N , where N is the length of the temporal

matrix.
We assume that the numbers of seven relations (except

for before) existing in the ith row of the temporal matrix are

vj, j 2 f1; 2; . . . ; 7g. To encode all possible placements, a

feasible scheme is that each placement has equal probability

of occurrence. So, we need
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Fig. 6. The basic rule induction algorithm. First, a number of rule candidates are generated by the construct and merge operator. Then, the MDL
principle is used to find the rule candidate which maximally decreases the DL of the event stream and rule set. Subsequently, the event stream is
updated by the selected rule candidate. The process will be repeated until the decrease of DL is smaller than a given threshold or the maximum
iteration number is reached.



ri ¼ log
Y7

j¼1

vj
N � i�

Pj�1
k¼0 vk

� �
ð5Þ

bits to encode the positions of eight relations in the ith row,
where v0 ¼ 0.

Then, encoding the value of vj and the value of i requires
ð7 logui þ logNÞ bits, where ui ¼ maxjfvjg, N is the size of
event stream. Thus, the total number of bits to encode the
temporal matrix is

Rbits ¼
XN
i¼1

ri þ 7 logui þ logN½ �: ð6Þ

Finally, given the current grammar G, LðSjGÞ ¼ Sbits þ
Rbits bits are needed to encode the whole event stream.

A similar scheme is adopted to encode each event rule.
LðGÞ is the sum of the bits required for each event rule.

4.3 Multilevel Rule Induction Strategy

With the exhausted strategy of candidates generation in the
above algorithm, too many candidates will be generated,
which increases the evaluation costs. Furthermore, some
rule candidates that can indeed compress the primitive
stream, but without any semantic meanings, may disturb
the subsequent induction process.

Thus, we use a heuristic cue to filter out the redundant
candidates and obtain more meaningful rules. That is,
people would like to combine one object together with its
most similar objects to form a new concept. For instance,
due to the close evolutionary relationship, monkey, orangu-
tan, and human can be summarized as primate in biology. In
our work, the similarity between two visual events A and B
is measured by their spatiotemporal distance, which is
defined as follows:

DistðA;BÞ ¼ � �DistsðA;BÞ þ ð1� �Þ �DisttðA;BÞ; ð7Þ

that is, the sum of the weighted spatial distance DistsðA;BÞ
and temporal distance DisttðA;BÞ. The value of � is set
empirically. DistsðA;BÞ is defined as follows:

DistsðA;BÞ ¼ 2� volð dcubeAÞ þ volð dcubeBÞ
volðunionð dcubeA; dcubeBÞÞ ; ð8Þ

where dcubeA denotes the average s range (shown in Section 3)

of all instances of event A, which is represented as a three-

dimensional cube with x; y-axis in image coordinate and the

orientation axis. volð dcubeAÞ is the volume of dcubeA.

unionð dcubeA; dcubeBÞ returns the smallest cube that contains

the dcubeA and dcubeB.
DisttðA;BÞ is computed as the average of temporal

distance between two instances:

DisttðA;BÞ ¼
1

nA þ nB
XnA
i¼1

min
j¼1;...;nB

fdisttðai; bjÞg
(

þ
XnB
i¼1

min
j¼1;...;nA

fdisttðbi; ajÞg
)
;

ð9Þ

where

disttðai; bjÞ ¼ 2�
lenðtaiÞ þ lenðtbjÞ
lenðunionðtai ; tbjÞÞ

; ð10Þ

where nA is the total number of A’s instances in the current
event stream, tai ¼ ðstart pointai ; end pointaiÞ, that denotes
the temporal interval of the instance ai, lenðtaiÞ is the length
of tai , unionðtai ; tbjÞ returns the smallest temporal interval
that contains tai and tbi .

With the spatial-temporal distance, a multilevel rule
induction strategy is proposed, as shown in Algorithm 1. At
first, the events (event classes) in the current event stream
Cur Str are clustered into several event sets E Set by
agglomerative hierarchical clustering [48]. Based on the
obtained dendrogram, the event clusters can be easily
determined by hand. Certainly, the number of clusters can
be estimated by some clustering validity indices, e.g., the
Dunn index [49]. Then, the original induction algorithm
RuleInductionðÞ is performed in each event set, where only
the events in the same cluster can be constructed or merged.
The new learned rules New Rule are added into the rule set
Rule Set. Subsequently, for each new rule, all instances in
the current event stream are replaced by the leftmost
nonterminal of the rule. The process is called CompressðÞ.
The clustering-induction process will be repeated until the
event set cannot be further separated (all events are very
close to each other). Then, the rule induction will be
conducted in the final set for the last time.

Algorithm 1. Multilevel rule induction strategy

1: Rule set ¼ ; ; Cur Str ¼ Init Str;
2: E Set ¼ EventClustering(Cur Str);

3: while numðE SetÞ > 1 do

4: for i ¼ 1 : numðE SetÞ do

5: New Rule ¼ RuleInduction(Cur Str, E SetðiÞ);
6: Rule Set ¼ Update(Rule set, New Rule);

7: end for

8: Cur Str ¼ Compress(Cur Str, Rule Set);

9: E Set ¼ EventClustering(Cur Str);

10: end while

11: New Rule ¼ RuleInduction(Cur Str, E Setð1Þ);
12: Rule Set ¼ Update(Rule set, New Rule);
13: return Rule Set;

An example of the proposed multilevel rule induction
process for gymnastic exercise E1 is illustrated in Fig. 7. The
left part shows the dendrogram of hierarchical clustering at
different levels. Based on the dendrogram, we choose the
appropriate partition by examining the semantic meanings
of each clusters manually. In the figure, the events that are
linked to each other below the dashed line will belong to the
same cluster. The learned rules are listed on the right side of
Fig. 7. After the training stream is replaced by the learned
rules, the induction process will be carried at the next level.
In this example, the rule induction process is over through
three levels. In the learned rules, the hidden structure of the
gymnastic exercise can be captured effectively. For exam-
ple, P3 denotes “raising both hands to the shoulder level
simultaneously” (referring to the primitives in Fig. 4). Finally,
the exercise E1 is indicated as the nonterminal P36.
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Here, a frequent pattern mining algorithm [37] is also
utilized to filter out the infrequent rule candidates: A
construct candidate can be generated only if its support
exceeds a threshold suppmin, where the support denotes how
often a candidate occurs in the event stream.

The support of a rule candidate is also used to compute the
production’s probability. Suppose there are n productions
that share the same leftmost nonterminal E, the prob-
ability of ith production is obtained as follows:

P ðE ! sðiÞÞ ¼ supportiPn
j¼1 supportj

: ð11Þ

For other nonterminals extended by a unique production,
their probabilities are set to one.

5 MULTITHREAD PARSING

Provided the learned event rules, the task of parsing is to
find out the most possible derivation (parse tree) T to
interpret a given primitive stream S, further recognizing the
interesting events. In this work, for each interesting
complex event A, we learned a set of rules GA. In terms
of Maximum Likelihood criterion, the event recognition can
be described as follows:

<Ad; Td> ¼ arg max
<A;T>

P ðS; T jGAÞ; ð12Þ

where Ad is the final decision on the type of complex event,
Td is the recovered parse tree, and P ðS; T jGAÞ is computed
as the product of the probabilities of the rules used in the
parse tree.

5.1 Parsing Algorithm

Referring to [44], we propose the multithread parsing
algorithm. The parsing algorithm executes three operations,

i.e., scanning, completion, and prediction, iteratively. In the
end, the algorithm examines whether the root symbol is
completed or not. If completed, the corresponding parse
tree can be recovered by backtracking.

Here, the state in the parsing algorithm is represented
as follows:

I : X ! � � Y � ½��; ð13Þ

where I is the ID set that indicates the state’s constituents in
the input primitive stream, the dot marker is the current
parsing position, which expresses that the subevents � have
been observed and the next symbol to be scanned is Y , � is
the unobserved string, and � is the Viterbi probability
which corresponds to the maximum possible derivation of
the state. Additionally, the temporal property of the state is
also saved, e.g., start point and end point.

The state’s ID set in common parsing algorithms, e.g.,
Earley-Stolcke parser [46], can only involve a set of
consecutive primitives. Under the strong constraint, a
primitive string corresponding to one complex event cannot
be inserted by the primitives belonging to other events.
However, due to the possible parallel relations in our case,
the ID sets of two subevents maybe overlapped. As shown
in Fig. 8, the input primitives are arranged as fb a b a cg
by their end-times, where the numbers indicate the
corresponding IDs. The left box of Fig. 8 shows the event
rules. To recognize the event Z, the subevent Y is
comprised of the first, third, and fifth primitives, the ID
set should be ð1; 3; 5Þ, whereas the ID set of another
subevent X is ð2; 4Þ. The ID set constraint should thereby
be relaxed so that multiple parsing states overlapping in
time can exist in the current state set. In [44], Johnston has
relaxed the constraint in an unification chart parsing
algorithm for multimodal human-computer interaction.
Here, we adopt it in the form of Earley-Stolcke algorithm
[46] and further supply an error recovery strategy.

Given the current StateSetðiÞ and primitive, the follow-
ing three steps will be performed.

5.1.1 Scanning

In our work, for each primitive, say d, we add a pre-non-
terminal rule D! d where the probability is one so that the
role of Scanning is to accept the current primitive with the
predicted state of the pre-non-terminal rule. And the
likelihood of the detected primitive will be multiplied by
the Viterbi probability of the predicted state. The process
can be described as follows:

Id : D! �d ½1�
j : d ½likd�

�
) I 0d : D! d � ½likd�; ð14Þ
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Fig. 7. The multilevel induction process for gymnastic exercise E1.
Abbreviations of temporal relations: b = before, m = meet, e = equal [43].
E1 is denoted as the nonterminal P36.

Fig. 8. Illustration of the ID set constraint. The left box shows a set of
event rules, where the relation between subevent X and Y is during.
Due to the parallel relation, the ID sets of subevents may be intersected.
In this case, the ID set of Y is ð1; 3; 5Þ, while the ID set of X is ð2; 4Þ. The
continuous ID set constraint should thereby be relaxed to an unordered
one.



where Id is null set, I 0d ¼ fjg, j is the ID of the primitive in

the input stream, and likd is the likelihood of primitive d.

5.1.2 Completion

For a completed state inStateSetðiÞ, suppose I 00 : Y ! ! � ½�00�
that denotes event Y has been recognized; the state Sj in the

last state set StateSetði� 1Þ will be examined with the

following conditions:

. Y is one of the unobserved subevents of Sj.

. I 00 \ ISj ¼ �, the ID set of the completed state I 00 does
not have the same primitives as that of Sj.

. The temporal relation between Y and the observed
subevents of Sj is consistent with the rule definition.
The temporal relation is computed by a similar fuzzy
method in [47].

For the state satisfying the above conditions, we examine

whether Y is the first unobserved subevent (the symbol

following the dot) or not. If it is not, the unobserved

subevents that are prior to Y are treated as deletion error

candidates, which will be handled in Section 5.2, else Sj can

be assumed as I : X ! � � Y �½��, a new state is generated:

I : X ! � � Y � ½��
I 00 : Y ! ! � ½�00�

�
) I 0 : X ! �Y � � ½�0�; ð15Þ

where I 0 ¼ I
S
I 00 and �0 ¼ ��00.

In the current state set, if another state identical to the new

state has existed, the Viterbi probability �c that the identical

state will be modified is �c ¼ maxf�c; �0g, else the new state

will be added into the state set.

5.1.3 Prediction

As the next symbol may belong to another parsing thread,

all of the uncompleted states in the last state set will be put

into the current state set in prediction. Note that all of the

nonterminals should be predicted in initialization.

5.2 Error Recovery Strategy

Commonly, there are three types of errors in practice:

insertion, deletion, and substitution errors. Insertion errors

mean the spurious detection of primitives that do not

actually happen. Deletion errors are the missing detections

of primitives that actually occur. Substitution errors denote

the misclassification between primitives.
In [21], insertion errors are accepted by the extended skip

productions; nevertheless the deletion errors cannot be

handled by such skip productions. In [22], three hypotheses,

corresponding to the three kinds of errors (insertion,

deletion, and substitution), are generated when the parsing

fails to accept the current primitive. However, an error may

not lead to immediate failure, but to failure in the next

parsing iteration.
Here, referring to the idea in [45], a number of error

hypotheses will be generated along with the parsing

process. Finally, the Viterbi-like backtracking will deter-

mine the maximum possible error occurrences. Since a

substitution error can be seen as a pair of one insertion error

and one deletion error, only insertion and deletion errors

are considered in the following.

5.2.1 Insertion Error

Due to the relaxed ID set constraint in which the identifiers

may be disconnected, the insertion errors are considered

naturally. At the end of parsing, for each completed root

state If : 0! S � ½�f �, the primitives that are not contained

in If will be treated as insertion errors of this derivation.

The penalties will be added as follows:

� ¼ �f
Y
i2I 0

f

�i; ð16Þ

where �i is the penalty of the ith insertion error that is a

small value; I 0f is the set including all insertion errors.

5.2.2 Deletion Error

As presented in Section 5.1, deletion error candidates maybe

generated in a completion operation. Supposing a state I 00 :

X ! � � Y1Y2 . . .YnY �½�00� and a completed event Y , Algo-

rithm 2 will be performed to transform the state into a

new one Ie : X ! �Y1Y2 . . .Yn � Y �½�e�, where the events

Y1Y2 . . .Yn are assumed to be completed by deletion error

hypotheses. Here, An s ¼ I 00 : X ! � � Y1Y2 . . .YnY �½�00�,
I 0 ¼ I [ I 00, where I is the ID set of the completed state of

event Y , e position is the position where Y locates at in

An s, s set is the last state set.

Algorithm 2. Recovery(An s,I 0,e postion,s set)

1: if An s:predict is pre-non-terminal then

2: z ¼ Error_Hypothesize(An s:predict);

3: re s ¼ scanning(An s, z);

4: else

5: re s ¼Max_Ex(An s:predict, I 0, s set);

6: while re s:dot < sizeðre s:ruleÞ do

7: Recovery(re s, I 0 [ Ire s, re s:dotþ 1, s set);

8: re s ¼Max_Ex(An s:predict, I 0, s set);

9: end while

10: end if

11: new s ¼ completion(An s, re s);

12: if new s:dot < e position then

13: Recovery(new s, I 0 [ Inew s, e position, s set);

14: else

15: Return;

16: end if

Concretely, Yi ¼ An s:predict is the symbol just behind

the dot of An s. If Yi can only be completed by pre-non-

terminal rule Yi ! z (z is a terminal), z will be recovered as

an error hypothesis. The likelihood of z is assigned to a

small value as penalty. Then, a state re s will be generated

by scanning.
Else ifYi is a nonterminal,Max Ex is performed to find out

the state re s ¼ Yi ! �0 � Z�0 in s set, where the state re s has

the maximum Viterbi probability to complete Yi. Then,

Recovery and Max Ex are performed repeatedly until re s

becomes a completed state.
Then, An s is combined with re s to form a state new s

with completion. Finally, we examine whether the dot

position of new s reaches e position; if true, the recovery

of An s is over, else recover the next subevent.
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5.3 Additional Constraints

Due to the relaxed ID set constraint and the generated error

hypotheses, there may be redundant states that are generated

through the combinations of different primitives. Therefore,

we propose two constraints to control the number of states

in parsing process.

5.3.1 Beam-Width Constraint

Here, we define two states are isomorphic, if and only if they

share the same rule, the same dot position, but different ID

set. In terms of the beam-width constraint, we prefer the one

with more primitives in ID set between two isomorphic states.
Assuming fS1; S2; . . . ; SNg is an isomorphic state set

where each pair of the states in this set is isomorphic, we

compute the rank score for each state as follows:

LikeliðSiÞ ¼ �ðSiÞ þ �
[N
i¼1

ISi

�����
������ jISi j

 !
; ð17Þ

where �ðSiÞ is the Viterbi probability of state Si, � is the

penalty of insertion error, presented in Section 5.2, j
SN
i¼1 ISi j

denotes the number of primitives in the union set of all ID

sets of the isomorphic states, jISi j is the number of primitives

in state Si. Note that the hypothesized deletion errors are

not counted in jISi j.
Then, the beam-width constraint can be presented as: In an

isomorphic state set, only the first ! states can be saved in

terms of the rank score. The larger the ! is, the more states

will be saved in the state set.

5.3.2 Maximum Errors Constraint

Here, we assume that deletion errors just take a small

proportion in a state. Thus, the maximum errors constraint is

proposed to prune the states with too many error

hypotheses. An exponential distribution is used to model

the number of deletion errors. It is written as e�	n
1
2 , where 	

is a control parameter, n is the size of ID set of the state. For

a given state with m deletion errors, if m
n > e�	n

1
2 , the state

will be pruned.

6 EXPERIMENTAL RESULTS

In this section, extensive experimental results in different

scenes are reported to validate our approach.

6.1 Gymnastic Exercises

Three exercises called E1, E2, and E3 are chosen to validate

our method. Twenty-nine sequences are collected. The

numbers of sequences are 9, 10, and 10, respectively.
The goal of this experiment is to validate the effective-

ness of the proposed approach to modeling and recovering
the temporal relationships in the multiple moving agents.
Thus, the gymnastic exercises are not considered as single-
agent events, but multi-agent events where hands and feet
are the moving agents. The motion trajectories of hands and
feet need to be extracted as the original feature. We track
hands and feet using some prior color and spatial
information (more sophisticated tracking techniques may
be useful, but this is not our focus here). After primitive
modeling, 18 primitives are obtained. Some of them are
shown in Fig. 4. Finally, each exercise includes around
23 primitives. To learn event rules, we take the first five
sequences as training data for each exercise.

Based on the learned grammar, we first investigate the

time costs of the parsing algorithm as different parameter

settings. Twelve sequences (each exercise has four sequences)

are chosen for the experiments. As the control parameters are

set as different values, we perform the multithread parsing to

classify the exercise in a given primitive stream.
The results of average time cost are presented in Fig. 9a,

where ! and 	 correspond to the beam-width constraint and

maximum errors constraint, respectively. From this figure, we

can see that the time cost is in direct proportion to the

! value. However, the effect of 	 on time cost is not clear

when ! is small. The inverse proportion between 	 and time

cost can be observed clearly until ! is larger than 7. The

main reason is that a state with many deletion errors not

only has a very little Viterbi probability due to the penalties

for deletion errors, but also a low rank score in its

isomorphic set. Therefore, when ! is small, a state with

deletion errors may also be pruned due to the beam-width

constraint, even if it satisfies the maximum errors constraint as

	 is small. Fig. 9b illustrates this case clearly. The top curve

(! ¼ 10) is approximate to an inverse proportion line

between 	 value and time cost, while the bottom curve

(! ¼ 3) is approximate to a horizontal line.
Fig. 9c illustrates the effect of beam-width constraint on

saving the time cost. The bottom curve shows the time costs

with 	 ¼ 0:5, as different ! settings. The top line presents the

time cost as ! ¼ 50; 	 ¼ 0:5, which is the approximation for

the case without using beam-width constraint. We can see that

beam-width constraint can reduce the time cost effectively.
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Fig. 9. Time costs of the parsing algorithm as different parameter settings. (a) Average time costs; (b) the effect of maximum error constraint to save
time cost; (c) the effect of beam-width constraint to save time cost; (d) the performance/cost rate.



Fig. 9d shows the performance/cost rates with different

parameter configurations. The performance/cost rate is

computed as expðCCRÞ
t , where CCR is the correct classifica-

tion rate, t is the average time cost. Because we prefer a

good recognition result even with a little high time cost, the

CCR is enlarged by an exponential function. As shown in

the figure, our method achieves the best performance/cost

rate, as ! ¼ 3; 	 ¼ 0:5.
Then, we validate the performance to event recogni-

tion. Here, HMM and Coupled Hidden Markov Model

(CHMM) are chosen for comparison because they can be

trained with little human intervention, while other DBN-

based methods usually require manual construction of

model topology in terms of different events. For HMM,

the input is an eight-dimensional vector sequence formed

by the four trajectories of hands and feet. For CHMM, the

four trajectories are divided into two parts for the input of

each chain (one chain includes the trajectories of left hand and

left foot, the other chain is comprised of right hand and right

foot). We also take the first five sequences for training

parameters and all sequences for test, which is the same as the

proposed grammar approach. The results are presented in

Table 1, as the control parameter ! in MTP method is 3. As

shown in Table 1, as	 is less than 0.5, our system can recognize

all of the sequences correctly, whereas HMM misclassifies

three sequences and CHMM misclassifies one.
To further validate the robustness of the MTP algorithm,

three kinds of synthetic errors are randomly added into the

testing trajectories as follows:

. A deletion error is added by replacing a motion
trajectory segment that corresponds to a primitive
with a still trajectory that does not correspond to
any primitive.

. An insertion error is added by replacing a still
trajectory segment with a motion trajectory segment
that corresponds to a random primitive.

. A substitution error is added by replacing a motion
trajectory segment with another segment that corre-
sponds to a different primitive.

After various amounts of large timescale errors are
added, we do event classification with the original trained
models or rules. The performance is shown in Table 2. As
six additional errors are added (one substitution error is
equivalent to a pair of one insertion error and one deletion
error, so there are over 25 percent errors in the primitive
stream) as ! ¼ 3; 	 ¼ 0:2 and ! ¼ 5; 	 ¼ 0:2, the MTP still
acquires a satisfying result of 96.6 percent due to the
discriminative rules and the effective error recovery
strategy, while the performances of HMM and CHMM
obviously decrease as the number of errors increases. And
we also can see that as ! ¼ 3; 	 ¼ 0:5, the performance of
MTP will decrease rapidly when the number of errors
exceeds 2. That is because the maximum tolerance of the
deletion errors is 23 � expð�1 � 0:5 �

ffiffiffiffiffi
23
p
Þ � 2 (23 is the

average length of a primitive stream), according to the
maximum errors constraint.

From the above comparisons, the effectiveness and
robustness of our approach have been validated. Moreover,
by the parsing process, a parsing tree can be obtained to
express the hierarchical structure in the complex event
explicitly. An example of the whole parsing process is
shown in Fig. 10, where Fig. 10a shows a sequence of
exercise E3 and the detected results of primitives. Fig. 10b
shows the parse tree recovered by the multithread parsing.
According to the parse tree, each input primitive has two
possible afflictions. One is that the primitive is accepted by
the parse tree. The other is that the primitive is identified as
an insertion error. Thereafter, the metric overall correct rate
(OCR) is adopted to measure the parsing accuracy, which
can be defined as NAþNI

NP , where NA is the number of correct
acceptance of primitives in the parsing tree, NI is the
number of correct detection of insertion errors, and NP is
the total number of primitives.

Table 3 presents the parsing accuracies (OCR) with
original data as well as various additional errors. As shown
in the table, most primitives are accepted by the parse tree,
while the parsing accuracies decrease with the increase of
the added errors. As ! becomes bigger and/or 	 becomes
smaller, more parsing states can be saved so that it is easier
to find a globe-optimal parsing tree and a higher accuracy
can be achieved.
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TABLE 1
CCRs on Gymnastic Exercises Recognition

TABLE 2
CCRs on Event Recognition with Additional Errors



6.2 Traffic Events in Crossroad

A traffic light event (one traffic cycle) consists of three

subevents occurring sequentially, i.e., “passing straight on the

main road,” “turning left from the main road to the side road,”

and “turning left from the side road to the main road,” as shown

in Fig. 12. Further, “passing straight in the main road” can be

divided into two parallel ongoing subevents, “passing

straight on the left side of the main road” and “passing straight

on the right side of the main road.” Eventually, each event

consists of a number of primitives corresponding to the

passing of single vehicles.
We use a tracking system developed by Yang et al. [42] to

acquire vehicle trajectories continuously in a rush hour. The

trajectory stream lasts for about 90 minutes, which includes

45 traffic signal cycles. Due to the serious occlusions, many

broken trajectories exist in the original trajectory set. For

this problem, a post filtering is performed to remove the

trajectories that start/end at the central zone of the scene.
After primitive modeling, 17 primitives are obtained.

Some of them are illustrated in Fig. 4. Then, the spatial

anomaly trajectories that do not belong to any primitive

models are filtered out. Finally, a primitive stream with the
size of 1,852 is obtained for the following rule induction and
event recognition.

Twenty-five traffic cycles are used for rule learning. Fig. 11
presents the learned rules. We find four main traffic events in
the crossroad are learned correctly. They are “turning left from
the main road to the side road,” “turning left from the side road to the
main road,” “passing straight on the left side of the main road,” and
“passing straight on the right side of the main road,” which are
denoted asP46,P47,P49, andP50, respectively. As shown in
the figure, a number of recursive rules, such as rule #7 and
rule #9, are also obtained to describe the continuous vehicle
passings in green light duration.

However, we find that the whole traffic light rules in the
scene still cannot be acquired correctly with the original
training data due to the distortion of some unrelated events.
For instance, the event “turning right from the side road to the
main road,” referred as v 8 1 in Fig. 4j, is totally unrelated to
the traffic light rules. That is because, in this traffic
crossroad, v 8 1 can occur at any time, whatever the traffic
light is. The distortion event may be combined with another
useful event to form a meaningless event which will disturb
the subsequent induction process. So, four kinds of
distortion events, e.g., v 8 1, are manually picked out from
the original 17 trajectory clusters. After removing such
unrelated trajectories, the whole traffic light rule in the scene
(the top six of these rules in Fig. 11) can be obtained correctly
in the final rule set where the whole traffic light event is
denoted as P57. The other rules and the corresponding
semantic meanings are also presented in Fig. 11.

Then, 20 traffic cycles are used to test the parsing
algorithm. We test the parsing algorithm with different
parameter settings. As ! ¼ 1; 	 ¼ 0:5, two of 20 traffic cycles
cannot be recovered. As ! > 1, all cycles can be recognized
correctly. Furthermore, we examine the four main
subevents (P46, P47, P49, and P50 in Fig. 11) and the
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Fig. 11. The learned rules in traffic light events. v i j is the primitive
where i 2 f1; 2; . . . 8g; j 2 f1; 2; . . . ; 6g, which represents the basic
motion pattern of “moving from the ith entry to the jth exit.” For the
meaning of entries and exits, refer to Fig. 3.

Fig. 10. An example of the recognition process of the exercise E3.
(a) The detected primitives along with the time axis. (b) The
corresponding parse tree.

TABLE 3
Parsing Accuracy in Recognizing Gymnastic Exercise

Here, #e ¼ 0 means the ordinal data, #e ¼ 1 is the data with one
synthetic error, and so on.



whole traffic light events (P57, in Fig. 11). The number of
primitives belonging to each subevents is counted. Then,
the parsing accuracies are computed in terms of the
definition in Section 6.1.

The parsing accuracies are presented in Table 4. We can
find that the parsing accuracies will be higher, as ! value is
larger. We also find that in some traffic cycles, one of the main
subevents does not occur at all. For instance, in the fourth
cycle, no vehicles turn left from the main road to the side road
(P46 is absent). Such absences of subevents will be
considered as deletion errors in our parsing process. In
summary, five traffic cycles with the absence of main
subevent (4th, 6th, 7th, 13th, and 20th cycles) are all
recognized successfully when ! > 1.

A parsing example in the traffic scene is shown in Fig. 12.
Fig. 12a presents the temporal relations of the four main
subevents and Fig. 12b shows the parse tree.

We also find that some vehicles conflict with the traffic
light rule in some traffic cycles, i.e., “passing a red traffic
light.” Our parsing algorithm has correctly decided them as
insertion errors. It suggests the MTP algorithm is able to
detect abnormal behaviors that conflict with other events in
temporal relations.

6.3 Multi-Agent Interactions

Furthermore, we perform experiments on a new multi-

agent interaction database that is a subset of the CASIA

action database [50]. There are five kinds of two person

interactions, including:

. I1: Two people pass through the scene in the same
direction. One person follows the other.

. I2: Two people pass through the scene in the same
direction. One of them first follows the other, then
speeds up and goes beyond the other.

. I3: Two people pass through the scene. One first
follows the other, then speeds up to reach the other,
finally they keep walking together.

. I4: Two people enter the scene from opposite
directions. They approach and stop to chat, then
they depart along their original directions.

. I5: Two people enter the scene from opposite
directions. They meet to chat, then one person
changes his direction and walks with the other one.

Since the interactions may occur everywhere in the

scene, we represent these interactions in relative local

coordinates. For each moving object, we construct one local

coordinate; where the original point is the moving object,

the y-axis is aligned with the motion direction. The

trajectory of the other moving object is projected onto this

local coordinate. Fig. 13 presents an example on the

interaction “two people meet, then depart.”
Then, to transform the relative trajectories into a symbol

stream, we cluster the possible positions into a set of

interaction primitives (IPs) in local coordinate. An appro-

priate number of clusters is chosen, depending on the

desired representative granularity. Here, nine clusters are

obtained by k-means clustering. Fig. 14a shows the learned

clusters, which describe different spatial relations between

the reference and the other moving object.
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TABLE 4
Parsing Accuracies on Recognizing Traffic Events

Fig. 12. An example of recognizing a traffic cycle. (a) The main
subevents in a traffic cycle. (b) The corresponding parse tree of the
traffic cycle.

Fig. 13. The representation of the interaction “two people meet, then
depart” in local coordinates. (a) Person 0, indicated by the blue arrow,
serves as the reference; his motion direction is aligned with the y-axis.
(b) The motion trajectory of person 1 in person 0’s local coordinate,
where the relative motion direction is denoted by the blue arrow. (c)
Person 1 serves as the reference. (d) The motion trajectory of person 0
in person 1’s local coordinate.



Usually, a person moves continuously. Thus, if the

person falls in the same primitive for a few consecutive

frames, these primitives will be merged into one primitive

interval. Therefore, each interaction can be represented by

an interval-based primitive stream. Fig. 14b shows the

primitive stream of “two people meet, then depart.”
Then, the MDL-based rule induction algorithm is

performed to learn the event rules. Here, considering the

role of one person in interactions, we extend the rule with

the subject property. For example, a rule is represented as

P ! Xð0ÞY ð1Þ, where 0 and 1 are the subjects of X and Y . If

some IPs become an instance of the rule, a consistent

mapping of the subjects in these IPs to that in the rule

should be found. In this case, both Xð0ÞY ð1Þ and Xð1ÞY ð0Þ
are the instances of the rule, whereas Xð0ÞY ð0Þ is not.

The rules for “two people meet, then depart” are shown in
Fig. 15. The numbers in parentheses denote the subject

properties of the subevents, where subject ¼ 2 means any
subject values can match with it. Here, P32 indicates “two
people approach close to each other,” while P39 implies “two

people depart from each other.” The whole interaction is
denoted as P37.

For each interaction, 12 sequences are collected. Then,
three-fold cross validation is performed to validate the
proposed method. HMM, CHMM, and Variable Length
Markov Model (VLMM) are chosen for comparison. For
HMM and CHMM, as presented in [11], we compute the
four -dimensional feature vectors (relative distance, deriva-
tive of relative distance, velocity magnitude, and direction
alignment) as input. The number of hidden states for each
chain of CHMM are set as 2 due to the small training data
set and 3 in the case of HMM. For VLMM, we adopt the
method in [35]. The confusion matrices of HMM, CHMM,
VLMM, and the proposed MTP are presented in Fig. 16. As
shown in the figure, I1, I2, and I3 are easy to misclassify
because, when the two people are close to merging, our
tracking system tracks the entire group so that the two
people’s positions cannot be distinguished. As shown in
Table 5, we find the proposed MTP method achieves the
best recognition performance, due to the compact repre-
sentation at symbol level.

6.4 Remark

The above has presented the performance of our system in
both indoor and outdoor scenes. First, event rules contain-
ing hidden temporal structure can be learned by the MDL-
based rule induction algorithm effectively. Then, we
validate the effectiveness and accuracy of the MTP
algorithm in gymnastic exercises experiments, traffic events
recognition, and multi-agent interactions recognition.

In the experiments, some limitations of our system are
also shown:

. In rule induction, the distortions of unrelated events
cannot be removed automatically. To acquire mean-
ingful rules, a manual intervention is needed to
delete the distortion events.
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Fig. 15. The learned rules on the interaction “two people meet, then
depart.” Here, P32 indicates “two people approach close to each other,”
while P39 implies “two people depart from each other.” The whole
interaction is denoted as P37.

Fig. 14. The representation of multi-agent interaction at the symbol level.
(a) The learned IPs describing the spatial relations between the moving
object and the reference (the original point in the coordinate). (b) The IP
stream for the interaction “two people meet, then depart.”

Fig. 16. Confusion matrices with different approaches in recognizing multi-agent interactions. (a) HMM. (b) CHMM. (c) VLMM. (d) MTP.

TABLE 5
Recognition Accuracies of HMM, CHMM, VLMM, and MTP

in Recognizing Multiagent Interactions



. In parsing, the decision of temporal relation is based
on an appropriate threshold, which is inflexible to
handle the uncertainties in practice.

. Although two additional constraints can speed up
the parsing process efficiently, the MTP algorithm
also has a somewhat high computing cost.

7 DISCUSSION AND CONCLUSION

We have presented an extended grammar system for
complex visual event recognition, based on rule induction
and multithread parsing. In Table 6, we compare the
proposed system with previous work on complex event
recognition. There are some desirable properties in our
system. In contrast with the trajectory analysis-based
work [16], [18], our method not only learns the simple
motion patterns of single trajectory, but also the temporal
structure in trajectory stream. As a result, not only spatial
anomaly, e.g., “driving in the wrong lane,” can be detected
by our method, but the temporal anomaly, e.g., “passing a
red traffic light,” can also be detected. Compared with the
DBN-based work [12], [13], our training algorithm does
not need manual intervention on the number of moving
objects and model topology. Furthermore, because our
system runs at the event level, the hidden event structure
can be clearly recovered by the parsing algorithm. In
comparison with the rule-based method [21], [33], we
extend the common SCFG for recognizing complex events
with parallel temporal relations, and propose an MDL-
based rule induction algorithm to save the cost of the
manual definition of event rules.

In summary, we have addressed three important issues
left in previous grammar-based work, including: First,
traditional SCFG is extended to represent parallel relations
in complex event; second, an MDL-based rule induction
procedure is proposed to learn the event rules; third, a
multithread parsing algorithm is proposed to recognize the
interesting event in the given primitive stream, where error
recovery strategy is also embedded for robust parsing.
Extensive experiments have demonstrated the effectiveness
of our system.

In the future, we will focus on the following aspects:

. We will try to remove the distortion of unrelated
events in rule induction with some cognitive theory.

. We will adopt some probabilistic methods to decide
the temporal relation for handling the uncertainties.

. We will put more effort into optimizing the current
parsing mechanism and do experiments in extensive
realistic scenes.
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